

UH-60 Airloads Prediction by Coupled CFD

Airloads Workshop

Ethan Romander NASA Ames Research Center

February 17th, 2011

Software

- CFD: OVERFLOW2 v2.2b
 - 4th order central differencing in space; 2nd order dual timestepping
 - Spalart-Almaras 1-eq. turbulence model with rotational corrections (inviscid off-body)
 - Blade surfaces modeled as fully-turbulent, viscous, adiabatic walls
- Comprehensive: CAMRADII v4.6
 - CSD: non-linear finite elements
 - Control system, trim
- Delta-coupling technique
 - CAMRADII→OVERFLOW2 = blade sectional motions (elastic deformations plus rigid motions)
 - OVERFLOW2→CAMRADII = blade sectional airload deltas (normal force, chord force, and pitching moment)

CFD Grid

- "Alan Egolf grid". Rotor only with notional centerbody
- 26.2M points total (10.7 in near-body)
- Blade grid: 157x145 chord/span, y⁺=1
- Finest off-body spacing was $10\% C_{tip}$
- Also ran a fine grid with 50.7M points (35.2M nearbody) for selected cases.

Grid picture goes here.

Speed Sweep Overview

- M_{tip}=0.65
- Tunnel was trimmed to match predicted 1g level flight at various speeds—C_L, C_D, C_{M,R}, C_{M,P}
- Predictions trimmed to match tunnel loads—C_T, C_{M,R}, C_{M,P}—at each speed.

Speed Sweep: μ =0.3

Speed Sweep: μ =0.3

Speed Sweep: μ =0.15

Speed Sweep: μ=0.15

Speed Sweep: μ=0.4

Speed Sweep: μ=0.4

Collective Sweep

- • μ =0.3, M_{tip} =0.625, α =0, no hub moments
- • C_T/σ =0.08 taken as baseline with remaining points set as collective

deltas from the baseline

 Lift curve slope is under predicted by about 7% compared to test

Collective Sweep: -5°

Collective Sweep: -5°

Collective Sweep: +4.5°

Collective Sweep: +4.5°

Collective Sweep: +6.5°

Collective Sweep: +6.5°

Lessons Learned

- Modeling trim tab deflection is necessary to get loads right at r/R=0.775
- Small errors in qc definition can pollute Comprehensive code's perception of performance (especially power)